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Abstract

Strategic market interaction is here modelled as a two-stage game
in which potential entrants choose capacities and active �rms compete
in prices. Due to capital indivisibility, the capacity choice is made
from a �nite grid and there are substantial economies of scale. In the
simplest version of the model assuming a single production technique,
the equilibrium of the game is shown to depend on the level of to-
tal demand at a price equal to the minimum of average cost: with a
su¢ ciently large market, the competitive price (a price equal to the
minimum of average cost) emerges at a subgame-perfect equilibrium
of the game; failing the large market condition, the �rms randomize
in prices on the equilibrium path of the game. Generalizations are
provided for the case of two techniques.

1 Introduction

Recent research on Bertrand-Edgeworth competition with endogenous ca-
pacity determination has achieved interesting results. Under the e¢ cient
rationing rule, the subgame-perfect equilibrium of a duopolistic two-stage
capacity and price game (henceforth, CPG) yields the Cournot outcome
(Kreps and Scheinkman, 1983). This result may not hold, though, under
alternative rationing rules, where a mixed strategy equilibrium of the price
subgame can arise on the equilibrium path (Davidson and Deneckere, 1986).
More recently, Madden (1998) has established that a uniformly elastic de-
mand curve is su¢ cient for the Cournot outcome under oligopoly, regardless
of the rationing rule. Boccard andWauthy (2000 and 2004) have shown that,
while the Cournot result extends to oligopoly under KS�s assumption on cost
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and the e¢ cient rationing rule, this need not be so if, in the short run, the
�rms can produce above �capacity�at a �nite extra-cost.

Throughout most of this literature the cost of capacity has been viewed
as a continuous and convex function. As a consequence, at an equilibrium
of the CPG identical �rms choose a positive capacity (all choose to "enter").
Quite di¤erently, this paper allows for economies of scale over some range of
output. More speci�cally, because of capital indivisibility, potential entrants
are taken to have a discrete capacity choice set and the long-run cost function
exhibits discontinuities and nonconvexities.1 We analyze a two-stage CPG
under the e¢ cient rationing rule and assuming (short-run) average variable
cost to be constant until capacity. It turns out that the equilibrium may
yield the long-run competitive outcome. The competitive outcome is also
obtained by Yano (2008), although the price game under free entry being
envisaged here is quite di¤erent from Yano�s. Yano is concerned with the
case of U-shaped average cost curves and, secondly, a strategy for a �rm is a
"price-set of quantities being o¤ered" pair, each element in the set containing
any pro�t maximizing output (at the chosen price).2

The paper is organized as follows. Section 2 presents a model with a
single production technique. At any equilibrium of the CPG, total capacity
turns out to be equal to the competitive one (the quantity demanded at a
price equal to the minimum average cost), while pricing on the equilibrium
path depends on the size of the market compared to the �rm minimum
e¢ cient scale: with a su¢ ciently large market, the competitive price (the
minimum of long-run average cost) is charged, otherwise the price subgame
has a mixed strategy equilibrium. To test robustness of these results under
a plurality of techniques, Section 3 shows how the competitive outcome may
also arise when two production techniques are available. Section 4 points
out the crucial role of capacity indivisibility for the possible emergence of
the competitive outcome.

1The role of indivisibility of productive factors (especially of capital equipment) for
economies of scale has long been recognized (see Kaldor, 1934, and Koopmans, 1957). For
a recent discussion see Tone and Sahoo (2003).

2Hence, at a price equal to the minimum average cost, the set of quantities includes
0 as well as the average-cost minimizing output. By now, it is clear why the price game
under free entry yields the competitive outcome - all active �rms producing the average
cost minimizing output (q�) and charging a price equal to the minimum of average cost
(c). Suppose any �rm producing q� deviates to a higher price. It could not sell anything
since previous customers would now turn elsewhere and have their demand met by an
"inactive" �rm (any �rm announcing a price of c but previously producing nothing).
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2 A single technique

In a homogeneous-product industry, let D(p) and P (Q) be the demand and
the inverse demand function, respectively, p the market price, and Q the
total quantity. D0(p) < 0 and D00(p) � 0 for p 2 (0; p); where D(p) = 0
at p � p and D(p) > 0 at p < p. A set Z = f1; :::; i; :::; zg of potential
entrants choose capacity at stage 1, while active �rms (each i with capacity
qi > 0) set prices at stage 2. Capacity is chosen from a �nite grid, due
to indivisibility of capital. F+ = ffg and R+ are the sets of nonnegative
integers and reals, respectively. In this section where a single technique is
assumed to be available, we let F+ be the capacity choice set faced by each
�rm and c the cost per unit of capacity. Given qi, i�s cost is c(qi) = cqi for
output qi � qi (we let 0 be the (constant) unit variable cost), while qi cannot
exceed qi. Long-run cost is thus C(qi) = cqi; with qi = [qi; qi + 1) \ F+ for
any qi 2 R+: C(qi) is constant at any qi 2 (f; f +1] - hence not everywhere
convex - and right-discontinuous at any f , where it increases by c. At any
qi 2 F+, the average cost function equals c and is right-discontinuous (with
an upward jump of c=f), while being decreasing, from c(f + 1)=f to c, for
qi 2 (f; f + 1]: capacity indivisibility results in scale economies over any
such range of output.

A deterministic capacity choice is made by each i 2 Z to maximize the
expectation of pro�ts �i = piqi � cqi. We denote by Q = Fz+ = fqg the
set of feasible capacity con�gurations, where q = (q1; :::; qz) is a capacity
vector resulting from stage-1 decisions. Further, let q�i denote the capacity
con�guration of i�s rivals, Q total capacity, A = fi j qi > 0g and n = #A
the set and number of active �rms at q, respectively, and g any �rm with
the largest capacity. At stage 2 every i 2 A knows q.

We want to compare the outcome of strategic capacity and price setting
with the long-run competitive equilibrium, namely, the equilibrium of an
industry where price-taking potential entrants make simultaneous capacity
and quantity decisions. Unfortunately, the competitive equilibrium may not
exist.3 In fact, total supply S(p) is inde�nitely large at p > c, and zero
at p < c, while S(c) 2 F+ (at p = c entrants choose any feasible capacity
and supply it entirely). Thus it can be S(c) = D(c) only if D(c) 2 F+.4
We overcome nonexistence by restricting ourselves to demand curves such
that D(c) 2 F+; thus the �competitive� price (p�) and output (Q�) are,
respectively, p� = c and Q� = D(c).5

3For nonexistence under U-shaped average cost, see Mas-Colell et al., 1995, pp. 337-8.
4Even so, some coordination is needed for the �rms to exactly supply D(c):
5De Francesco (2006) provides an analysis of the D(c) =2 F+ case under linear demand.

3



We denote byQ� the set of the least concentrated capacity con�gurations
(active �rms have the minimum feasible capacity) consistent with the long-
run competitive capacity: Q� = fq�g; where each q� is such that n� = Q� =
D(c). Further, at any q, let pw(q) and Qw(q) be, respectively, the market-
clearing price and total output with price-taking �rms: pw(q) = P (Q) and
Qw(q) = Q if Q � D(0), while pw(q) = 0 and Qw(q) = D(0) if Q � D(0).
Henceforth �wi (q) = (p

w(q)�c)qi denotes i�s pro�t at q under market clearing
and �wi (qi; q�i) = (p

w(qi; q�i)� c)qi denotes i�s pro�t under market clearing
as a function of qi; given q�i. If qi were continuous, then concavity of
�wi (qi; q�i) would follow straightforwardly from D00(p) � 0.

A price subgame is played at any q. Let p =(p1; :::; pn) = (pi; p�i) be a
(pure) strategy pro�le in the subgame, p�i being the strategy pro�le of i�s ri-
vals, and let di(pi; p�i; q); qi(pi; p�i; q); �i(pi; p�i; q) and �i(pi; p�i; q) be, re-
spectively, �rm i�s demand, output, pro�t and revenue in subgame q at strat-
egy pro�le p: �i(pi; p�i; q) = piqi(pi; p�i; q)�cqi = pimin fdi(pi; p�i; q); qig�
cqi. Under e¢ cient rationing, di(pi; p�i; q) = maxf0; D(pi)�

P
j 6=i qjg when

pi > pj for any j 6= i. Let eqi = eq(Pj 6=i qj) = argmaxqi P (qi+
P
j 6=i qj)qi ande�i = P (eqi +Pj 6=i qj)eqi.6 So long as eqi � qi, eqi is i�s (short-run) Cournot

best response to an output of
P
j 6=i qj by rivals. With D

00 � 0; eq0(�) < 0
for

P
j 6=i qj < D(0). With

P
j 6=i qj < D(0), we also let epi = ep(Pj 6=i qj) =

argmaxp p[D(p) �
P
j 6=i qj ]. Clearly, epi = P (eqi +Pj 6=i qj) and e�i = epieqi;

also, maxi epi = epg because ep0 < 0 for Pj 6=i qj < D(0). Let �i(q) and �i(q)
be, respectively, i�s expected pro�t and revenue at an equilibrium of the
price subgame. The following result is easily established.

Lemma 1. For any i 2 A, �i(q) � �wi (q):

Proof. This is obvious if pw(q) = 0. With pw(q) > 0, by charging pw(q)
�rm i fully utilizes capacity and hence earns �wi (q); regardless of p�i.

With Q 6= D(0); for the market-clearing price to obtain at an equilib-
rium of the price subgame individual capacities must be su¢ ciently small
compared to industry capacity (for the symmetric case, see Vives, 1986).

Lemma 2. (i) With pw(q) = 0, ( pw; :::; pw) is an equilibrium of price
subgame q i¤ qg=Q � 1�D(0)=Q. (ii) With pw(q) > 0, ( pw; :::; pw) is the
equilibrium of price subgame q i¤

�pwD0(pw) � qg: (1)

6With
P

j 6=i qj < D(0), eqi is the unique solution to @
@qi

h
P (qi +

P
j 6=i qj)qi

i
= 0; withP

j 6=i qj � D(0), P (qi +
P

j 6=i qj)qi = 0 at any qi � 0.
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Proof. (i) All prices equal to zero is an equilibrium if and only ifP
j 6=g qj � D(0), which leads to the stated condition.7

(ii) (pw; :::; pw) is an equilibrium if and only if
h
@(p(D(p)�

P
j 6=i qj)

@p

i
p=pw(+)

�
0 for all i 2 A, which leads to �pwD0(pw) � q and hence to (1). Uniqueness
of equilibrium can be established straightforwardly.

Inequality �pwD0(pw) � qi has a clear meaning. A uniform price pw > 0
is an equilibrium if and only if, for any �rm, residual demand has elasticity
not less than 1 when its price is raised above pw. Inequality (1) can also be
written qg=Q � �p=pw , where �p=pw is total demand elasticity at price pw, orepg � pw. A pure-strategy equilibrium (pse) does not exist when Q � D(0)
and

P
j 6=g qj < D(0) or when Q < D(0) and epg > pw. Then a mixed-

strategy equilibrium (mse) exists: all the su¢ cient conditions of Theorem
5 of Dasgupta and Maskin (1986) for equilibrium existence are satis�ed.
At a mse, expected revenue for the largest �rm equals the revenue of the
Stackelberg follower when rivals supply their capacity. (For this property,
see Kreps and Scheinkman (1983) for the duopoly; and see Boccard and
Wauthy, 2000, and De Francesco, 2003, for the oligopoly.).

Lemma 3. At any q for which no pse exists, �g(q) = e�g = epgeqg.
Proof. See De Francesco (2003).

Let �wi (qi = eqi; q�i) � �wi (eqi; q�i); where �wi (eqi; q�i) = (P (eqi+Pj 6=i qj)�
c)eqi. In light of Lemma 3, �rm g�s expected pro�t at a mse of price subgame
q can be written �g(q) = �wg (eqg; q�g) � c(qg � eqg). One main result of the
paper is the following.

Proposition 1 (i) If �cD0(c) � 1, then any q� is (part of) an equilibrium
of the CPG in which the competitive price c is charged on the equilibrium
path; (ii) if �cD0(c) < 1, then any q� is an equilibrium of the CPG in which
the �rms randomize over prices on the equilibrium path. (iii) Q = D(c) at
any equilibrium of the CPG.

Proof. (i) At any q� inequality (1) reads �cD0(c) � 1: holding it,
(c; :::; c) is the equilibrium of the price subgame. In all cases any active �rm
(any i 2 A�) has made a best capacity response to q��i. If ep�i > P (D(c)+1),8
then a mse obtains when i deviates to q0i � 2, resulting in �i(q0i; q

�
�i) =ep�i eq�i � cq0i: This is negative because ep�i � c and 1 � eq�i < 2 � q0i. Ifep�i � P (D(c) + 1); then deviating to q0i = 2 leads to a pse, hence to a loss.

7Other equilibria are such that
P

j 6=i:pj=0 qj � D(0) for any i : pi = 0.
8According to our notation, ep�i = P (eq�i+Pj 6=i q

�
j ) and eq�i = argmaxqi P (qi+Pj 6=i q

�
j )qi.
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A fortiori losses arise if deviating to q0i > 2. Finally, at q
� any inactive �rm

(any u =2 A�) has made a best response. Denote by (q0u; q��u) the capacity
con�guration when u deviates to q0u > 0. Obviously �u(q

0
u; q

�
�u) < 0 if a pse

obtains. If a mse obtains, then �u(q0u; q
�
�u) = epuequ � cq0u; this is negative

because epu = P (equ +D(c)) < c and equ < q0u.
(ii) A mse obtains at q�, hence �i(q�) = ep�i eq�i � c > 0. Any i 2 A�

has replied optimally: deviating to q0i > 1 raises cost without a¤ecting
expected revenue. Any u =2 A� has also made a best response: deviating
to q0u > 0 leads to a mse,9 hence �u(q0u; q

�
�u) = epuequ � cq0u < 0 since epu =

P (equ +D(c)) < c and equ < q0u.
(iii) With Q < D(c), any u =2 A will pro�t by deviating to q0u = 1 and

charging pu = P (Q+1).10 With Q > D(c) and holding (1), any i 2 A make
losses. If Q > D(c) and (1) does not hold, then g will pro�t by reducing
capacity by one unit. This is immediately seen if qi = 1 for all i 2 A, in
which case �i(q) = epieqi�c < 0 since epi = P (eqi+Pj 6=i qj) < c. With qg > 1,
�g(q) = epgeqg�cqg, with eqg < qg. Let epg > c (otherwise the point is obvious).
Since epg = P (eqg +Pj 6=g qj), it follows that eqg +Pj 6=g qj < D(c): On the
other hand, qg +

P
j 6=g qj � D(c) is a positive integer, hence eqg < qg � 1.

Clearly, �rm g will pro�t by deviating to q0g = qg�1: this lowers costs while
a¤ording an expected revenue not less than epgeqg.

Remarks. (a) The condition of statement (i) can also be written 1
D(c) �

�p=c: for the competitive outcome to arise at an equilibrium of the CPG
the market has to be su¢ ciently "large", in the sense that the ratio between
the �rm�s minimum e¢ cient size and competitive industry output must not
exceed demand elasticity.

(b) According to statement (iii), equilibrium total capacity always equals
the long-run competitive output D(c). (As will be seen in the next section,
this result is not robust to the introduction of a plurality of techniques.)

Computing the mse obtaining at q� when�cD0(c) < 1 is standard. There
is an equilibrium distribution �(p) over support S = [p�; p�]; since expected

revenue is e��i = ep�i eq�i ; p� = ep�i and p� = e��i . For p 2 S; p�n�1[D(p)�(D(c)�
1)] + p(1� �n�1) = e��i and hence �(p) = D(c)�1

r
p�e��i

p[D(c)�D(p)] .

9This fact is immediate if qu+D(c) � D(0) since then pw(qu; q�u) = 0 while
P

j 6=u qj =
D(c) < D(0) (see statement (i) of Lemma 2). With qu +D(c) < D(0), then d[p(D(p) �
D(c))]=dp > 0 at p = pw(qu; q�u) = P (qu +D(c)): this follows from D00 � 0 and the fact
that d[p(D(p)�

P
j 6=i qj)]=dp > 0 at p = c and

P
j 6=i qj = D(c)� 1.

10With Q = Q
��1; this would result in zero pro�t if the resulting subgame has a p.s.e..

Any such q is disposed of if, at zero pro�t, entering is preferred to not entering.
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Examples. 1. D(p) = 15� p and c = 2. At any equilibrium, n = Q =
D(c) = 13, and the competitive price c obtains.

2. D(p) = (10:5 � p)=3 and c = 1:5. At any equilibrium, n = Q =
D(c) = 3, �i = e��i = 1:6875, and �i = :1875. On the equilibrium path,

�(p) = 2

q
3(1:6875�p)
p(1:5�p) over S = [1:6875; 2:25]. �

Having shown that capacity con�gurations q� are always part of an equi-
librium, one might ask whether the converse is also true: can capacity con-
�gurations q : qg > 1;Q = D(c) be always ruled out as equilibria? The
answer is de�nitely yes under linear demand.

Proposition 2 If D00 = 0, then q 2 Q� at any equilibrium of the CPG.

Proof. In the Appendix.

Unlike with linear demand, with D00 < 0 there might be equilibria with
some active �rms having more than the minimum capacity. For example, let
p = 16:01 � Q2 and c = 0:01. Then D(c) = 4 and �cD0(c) < 1, hence any
q� (any con�guration with Q = 4; qi = 1 for all j 2 A�) is an equilibrium
where active �rms randomize on the equilibrium path. However, one can
check that any q such that Q = 4; n = 3; qg = 2 is an equilibrium too.

3 The case of two production techniques

The competitive outcome may also arise under a plurality of available tech-
niques. Suppose that potential entrants can choose among two production
techniques, � and �, entailing a cost per capacity unit of c� and c� and
capacity choice sets �F+ and �F+, respectively. We let � < �, c�� < c��;
and c� < c� : the average-cost minimizing technique is �, although �; by
entailing a lower minimum capacity, is cheaper at a su¢ ciently low output.
Similarly as before, we assume D(c�) 2 �F+ and D(c�) 2 �F+. Note that,
at the competitive equilibrium, � is adopted, p = c�, and Q = D(c�). We

let Q(�) = fq(�) : n(�) = D(c�)=�; q
(�)

i = � 8i 2 A(�)g, i.e., the set of
the least concentrated capacity con�gurations consistent with the compet-
itive capacity. We also let Q(�) = fq(�) : n(�) = D(c�)=�; q

(�)

i = � 8i 2
A(�)g. Further, we let eq(�)i = eq(Pj 6=i q

(�)
j ) and ep(�)i = P (eq(�)i +

P
j 6=i q

(�)
j ),eq(�)i = eq(Pj 6=i q

(�)
j ) and ep(�)i = P (eq(�)i +

P
j 6=i q

(�)
j ). Though not pursuing a

complete characterization of equilibria, we provide necessary and su¢ cient
conditions for the competitive outcome to possibly arise at an equilibrium
of the CPG.
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Proposition 3 (i) Let �c�D0(c�) � � and P (D(c�) � � + �) � c�. Then
q(�) is an equilibrium of the CPG, with the competitive price c� being charged
on the equilibrium path. (ii) Let �c�D0(c�) � � and P (D(c�)��+�) > c�.
Then q(�) is not an equilibrium of the CPG; any q� is an equilibrium, with
the market-clearing price c� being charged on the equilibrium path.

Proof. (i) With �c�D0(c�) � �, a pse arises at q(�). Further, for
any i 2 A(�) it does not pay to reduce capacity, what might be done by
deviating to technique � and installing, say, capacity � :11 at the new pse,
12 the deviant will sell � at price P (D(c�) � � + �) � c�, hence losses (or
no gains).

(ii) Since D00 � 0, it is also �c�D0(c�) > �: a pse obtains at q(�). While
q(�) is not an equilibrium (it pays any i 2 A(�) to deviate to technique �
and capacity �), q(�) is an equilibrium. Suppose any i 2 A(�) deviates to
technique � and capacity �. The market-clearing price falls to P (D(c�) +
� � �), less than c� since P (D(c�) � � + �) > c�: hence a loss, if a pse

arises. A loss would also arise at a mse, i.e., ep(�)i eq(�)i � c�� < 0: in fact,eq(�)i < � while, on the other hand, ep(�)i < c� (since ep(�)i � c�; ep0(�) < 0, andP
j 6=i q

(�)
j = D(c�)� � >

P
j 6=i q

(�)
j = D(c�)� �).

Note that, in the circumstances of statement (ii), equilibrium total ca-
pacity is below the competitive level; �rms make no pro�t but average cost
is above the minimum.

Examples. 1: D(p) = 32� 2p, c� = 1 and � = 1, c� = 1:2 and � = 0:8.
Statement (i) applies: any q(�) is an equilibrium of the CPG, with the �rms
charging the competitive price c� on the equilibrium path.

2. D(p) = 16 � p, c� = 2 and � = 2, c� = 2:2 and � = 0:6. Statement
(ii) applies. At q(�) (7 active �rms adopting �, each with capacity �), it
would pay for any active �rm to deviate to technique � and install �. Any
q(�) (23 active �rms adopting �, each with capacity �) is an equilibrium,
with the �rms charging 2:2 on the equilibrium path. At q(�) it does not pay
any active �rm to raise capacity and adopt � (it would make a loss at the
mse obtaining at the new price subgame).

Note that demand elasticity matters in two ways for the possibility of
the competitive outcome. First, as in the preceding section, demand must
be su¢ ciently elastic for the price subgame to have a pse at q(�): inequality

11 Installing any qi � � while deviating to � is immediately discarded.
12From the fact that �c�D0(c�) � � and since D00 � 0, it follows that (1) also holds at

the new subgame, namely, �pD0(p) � � at p = P (D(c�)� �+ �).
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�c�D0(c�) � � can in fact be expressed as �=D(c�) � �p=c� , hence the
"large market" condition is all the less restrictive the higher demand elas-
ticity at the competitive price. Secondly, given D(c�), a su¢ ciently high
demand elasticity makes it unworthy, at q(�), to any active �rm to deviate
to capacity � (the price increase at the new subgame is less than the increase
in the �rm�s unit cost).

One might wonder about generalization of previous results to the case of
several techniques. While not dwelling with this issue at lenght, we will show
how statement (i) of Proposition 3 would generalize. Let available techniques
be �; �; ; �; :::, with capacity choice sets �F+; �F+; F+; �F+; :::, respec-
tively, where � > � >  > � > :::. As before, we let c� < c� < c < c�; :::;
and c�� > c�� > c > c�� > :::. Again, at the competitive equilib-
rium, technique � is adopted, p = c�, and Q = D(c�). Statement (i)
would now read as follows: Let �c�D0(c�) � �, P (D(c�) � � + �) � c� ,
P (D(c�)� �+ ) � c , P (D(c�)� �+ �) � c�; and so on. Then q(�) is an
equilibrium of the CPG, with the competitive price c� being charged on the
equilibrium path.

4 Final remarks

We have seen how the long-run competitive outcome can arise at an equilib-
rium of a CPG. Capacity indivisibility plays a key role in this connection.
Suppose that capacity were instead a continuous variable. Then the com-
petitive price c cannot arise at an equilibrium of the CPG.13 Consider any
capacity con�guration with total capacity equal to D(c) and such that the
market-clearing price c is charged at an equilibrium of the price subgame.
Clearly, any active �rm has not made a best capacity response: by lower-
ing its capacity the market clearing price would rise above c, resulting in
positive pro�ts at an equilibrium of the price subgame.
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Proof of Proposition 2. Let P (Q) = a � bQ for Q � p = a=b

(a; b > 0). Then D(c) = (a � c)=b, eqi = a�b
P
j 6=i qj
2b and epi = a�b

P
j 6=i qj
2 .

Further, @2�wi (qi; q�i)=@q
2
i = �2b when qi +

P
j 6=i qj < D(0). Given Prop.

1, we just need to rule out any q : Q = (a�c)=b; qg > 1. In fact, �rm g would
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bene�t from deviating to qg � 1. This is immediate when price subgame q
has a p.s.e: then �i(q) = 0 for any i 2 A, hence g would pro�t from deviating
to qg � 1 and then charging P (D(c) � 1) = c + b: If price subgame q has a
mse, then epg > c and �g(q) = e�g � cqg. There are two possibilities: eitherepg � c+b or epg < c+b: In the former case deviating to qg�1 would raise g�s
expected pro�t at least to e�g�c(qg�1): since rivals can producePj 6=g qj at
most, �rm g will sell at least eqg = D(epg)�Pj 6=g qj � qg � 1 when chargingepg. If epg < c+ b, then qg � 1 < eqg < qg. Let qyi = argmaxqi2R+�wi (qi; q�i):
with

P
j 6=i qj � (a � c)=b; then q

y
i = 0:5[

a�c)
b �

P
j 6=i qj ] and one can write

�wi (qi; q�i) = �wi (q
y
i ; q�i) � b

�
qi � q

y
i

�2
. The capacity reduction can be

broken down in two virtual reductions, from qg to eqg and then from eqg to
qg � 1. It su¢ ces to prove that g�s pro�t will rise if, at each step, g is
charging the (short-run) market-clearing price. Assuming so, then g�s pro�t
will rise to �wg (eqg; q�g) in the �rst step. After the second step, g�s pro�t will
be �wg (qg � 1; q�g): this is larger than �wg (eqg; q�g) because qyg � qg � 1 < qg
at any q : n < Q = (a� c)=b.
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